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A GENERALISATION OF A SOLUTION CONCEPT FOR 

THE LINEAR PROGRAMMING PROBLEM WITH 

INTERVAL COEFFICIENTS 

A generalisation of the known concept of solving linear programming problems with interval coeffi-

cients is proposed. The generalisation allows the decision maker to make a better final decision, as he 

will have much more information about the problem under consideration. The algorithm proposed for 

determining the solution makes use of linear programming methods only. 

1. Introduction 

In many practical applications of linear programming the problem coefficients 

cannot be determined in a precise way. That is why quite a few researchers have been 

trying to propose a way to solve linear programming problems with imprecise coeffi-

cients [2]–[5], [7], [8], [10]. The difficulty lies in the fact that while dealing with such 

problems it cannot be unequivocally what the optimal solution is. Its understanding 

depends strongly on the decision maker preferences and attitude. For this reason it is 

necessary to consider various concepts, so that each decision maker can choose one 

that suits him most. 

In this paper, we propose a generalisation of one of the concepts of solving linear 

programming problems with interval coefficients – the one proposed in [10] and de-

veloped in [8]. The generalisation allows the decision maker to have more information 

about his problem with imprecise coefficients and the possible form of its optimal 

solution. 
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2. Formulation of the problem 

We consider the following problem: 
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The upper and lower ends of the intervals can be equal, so that model (1) compris-

es also the case where some coefficients are precise. Arithmetical operations on inter-

val numbers are understood in a standard way ([9]), i.e., they can be performed at the 

lower and upper ends respectively, so that the left hand and the right hand sides of 

expressions in (1) are also closed intervals. 

3. Solution concept proposed in the literature and its drawbacks 

In [8] and [10], the authors propose to consider the following notions:  

• the largest possible feasible region, determined in the case of positive decision 

variables by the following system of constraints: 
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• the smallest possible feasible region, determined in the case of positive decision 

variables by the following system of constraints: 
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• the most favourable objective function, corresponding in the case of positive de-

cision variables to the following objective function: 

 min
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• the least favourable objective function, corresponding in the case of positive de-

cision variables to the following objective function: 

 min
1
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Then they suggest to solve problem (1) by means of solving the following two 

crisp linear programming problems: 

• the Best Optimum Problem: objective function (4), feasible region (2), 

• the Worst Optimum Problem: objective function (5), feasible region (3). 

Such a solution informs the decision maker about two extreme alternatives:  

• what the optimum will be in case the unknown coefficients (all at the same time) 

take on the most favourable values, 

• what the optimum will be in case the unknown coefficients (all at the same time) 

take on the least favourable values. 

This approach yields interesting information, but the quality of this information 

might be improved. There are at least two reasons justifying the need to give the deci-

sion maker more exact information about the solution.  

First reason lies in the fact that the Worst Optimum Problem may be infeasible, in 

which case the decision maker does not really know what range of objective function 

values he can expect. Let us illustrate this statement by means of an example: 

Example 1 
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The following table shows the results: 

Best Optimum Problem: 
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Worst Optimum Problem: 
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Solution: 

;0,1 21 == xx  

Objective function = –1 

Solution: 

the problem is infeasible 

The above information does not tell the decision maker much about his problem. 

In the modification of the approach proposed later on the information about the solu-

tion given to the decision maker will be much more detailed. 
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The other reason for which the approach from [8] and [10] should be modified is 

a possible different interpretation of the imprecision in the problem coefficients. The 

imprecision, as is often the case, may be due to the fact that it is not the decision mak-

er that fixes the coefficients and he does not have enough information about their val-

ues – they will be known only in the future, and the decision has to be taken now. But 

there is also another possible source of imprecision: the coefficients are expressed as 

intervals also in case it is the decision maker that fixes the coefficients. He can fix 

them within the manoeuvre possibilities limited by the intervals and wants to see what 

values he should choose so that he is most satisfied with the optimal value of the ob-

jective function, on the one hand, and with the choice of the coefficient values on the 

other hand. Indeed, the choice of coefficient values, is not indifferent to him, e.g., it is 

on the way he fixes the technical and the right hand side coefficients that the quality of 

the products may depend – the higher the requirements, the better the quality. The 

question of the various ways of interpreting interval coefficients is discussed, e.g., in 

[6].  

The modification proposed in the following will constitute an improvement in both 

respects compared to the original method. 

4. Modification of the approach 

We propose to consider for problem (1) the following family of linear program-

ming problems ])1,0[( P : :  
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where C  is a function →2  with parameter  . The function C  can be chosen 

by the decision maker. But before discussing the objective function let us explain the 

constraints of (6). 

If we denote by FR  the feasible region of (6) for  , then the following lemma is 

true and its proof is straightforward, because the decision variables are positive. 
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Lemma 1. If 21    then 
12  FRFR  ])1,0[,( 21     

What is more, 0FR is identical with the largest possible region mentioned above 

and 1FR  – with the smallest possible region. Thus, if family ])1,0[( P  is consid-

ered, intermediate forms of the feasible region – and not only the two extreme ones – 

are taken into account. 

The parameter can be interpreted as the degree of requirements set to the solu-

tion. Indeed,   = 0 corresponds to the case when the constrains are the least requiring 

(there are thus many feasible solutions) and  = 1 to the other extreme case – when the 

constrains are most requiring (here we have the smallest possible feasible region).  

Let us now discuss the function C . The decision maker can choose it according to 

his preferences. Here are four proposals for it: 

a) ( )  tstsC ,min, =  

b) ( )  tstsC ,max, =  

c) ( )      ( )tstststsC ,min,max,max, −−=   

d) ( )      ( )tstststsC ,min,max,min, −+=   

It would be reasonable to consider cases a) and b) jointly. They might be used 

when the decision maker would like to see the best possible optimum and the worst 

possible optimum for each of the problems ])1,0[( P . Cases a) and b) should be 

used above all when the decision maker has no influence on the values of coefficients. 

Case c) might be used when the decision maker can choose   and if the following 

dependence is true: the higher the requirements set for the solution, the lower the ob-

jective function coefficients. Such a dependence may be true in some real world situa-

tions. Higher requirements imposed on the solution are the result of choosing lower 

technical coefficients and a greater right hand side of constraints. Lower technical 

coefficients representing, e.g., the use of some resource per product unit, may lead to 

lower cost per product unit, and the unit cost may be represented by the objective 

function coefficients. 

Case d) will also be used when the decision maker can choose  , in the case 

where the following dependence is true: the higher the requirements set for the solu-

tion, the greater the objective function coefficients. Again, this may be true in some 

applications, e.g., if the technical coefficients represent the use of a resource that has 

some influence on the quality of the product. In this case lower technical coefficients 

mean greater cost resulting from lower quality. 

Other types of function C can be considered, too. 

The basic idea of our approach is that the decision maker chooses function C  and 

then solves problems ])1,0[( P  for some values of  . This would give the deci-

sion maker an overview of possible optimal objective function values. This will be 
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useful in both cases of imprecision source: 

a) when the coefficients are unknown and the decision maker has no influence on 

them: here the proposed approach would give the decision maker an overview of what 

range of objective function values is possible; 

b) when the decision maker can choose the coefficients himself, e.g., by selecting 

the parameter   and choosing one P , the approach would help him to make his 

choice. He would see what objective function values correspond to which degree of 

requirements and would be able to decide whether he has to choose very high re-

quirements or can accept lower ones, because setting lower (but acceptable) require-

ments gives him a better optimal objective function value. 

In case a), if the decision maker is interested just in the range of possible objective 

function values, it may not be necessary to solve many problems P . In fact, it may be 

argued that just the extreme cases are necessary – which would almost bring us back 

to the original proposal from [8] and [10]. However, as Example 1 shows, the original 

approach may not indicate where the second extreme case (the upper bound of the 

range of possible objective function values) exactly lies. Here our approach would 

give an answer, using an algorithm which allows us to avoid solving ])1,0[( P  for 

many values of  . 

5. Algorithm for determining the range 

of possible optimal objective function values 

The following algorithm will determine the range of possible optimal objective 

function values when C in problems ])1,0[( P  corresponds to case a) or b) (or 

generally does not depend on  ). The algorithm is based on the halving procedure 

used, e.g., in [4].   is an accuracy parameter and should be chosen beforehand. 

Algorithm: 

Step 1: Set  := 0. 

Step 2: Solve P . If P  is infeasible – STOP, no feasible solution is possible. 

Otherwise set MIN equal to the current value of the objective function and set  =: . 

Step 3: Set  := 1. 

Step 4: Solve P . If P  is feasible, set MAX equal to the current value of the ob-

jective function and STOP – the range of the objective function values is [MIN, 

MAX]; 1 is the highest value of parameter   for which the problem P  is feasible. 

Step 5: Set  =: . 
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Step 6: Set 
( )

2
 +

= . 

Step 7: Solve P . If P  is feasible, set MAX equal to the current value of the ob-

jective function, set  =: . Otherwise set  =: . 

Step 8: If  −  go to Step 6. Otherwise STOP – the range of the objective 

function values is [MIN, MAX],   is the highest value of parameter   for which the 

problem P is feasible. 

The effect of the algorithm will now be presented using Example 1. In this exam-

ple any of the proposed choices of function C would lead to function ( ) tttC =, . Let 

us assume  = 0.01. 
 

Step 1  = 0 

Step 2 MIN = –1, 0=  

Step 3  =1 

Step 4 
1P  is infeasible 

Step 5 1=  

Step 6  = 0.5 

Step 7 MAX = 1.5; 5.0=   

Step 8  −  = 0.5 ≥   

Step 6  = 0.75 

Step 7 
75.0P  is infeasible. 75.0=  

Step 8  − = 0.25 ≥   

Step 6  = 0.625 

Step 7 MAX = 3.318; 625.0=   

Step 8  − = 0.125 ≥   

Step 6  = 0.6875 

Step 7 
6875.0P  is infeasible. 6875.0=  

Step 8  − = 0.0625 <  – STOP 

 

Thus, the decision maker knows that whenever the problem has a solution, the op-

timal value of the objective function will lie in the range [–1, 3.318]. The largest value 

of the parameter   for which P  has a solution is equal to 0.625, and for this   the 

optimum is equal to 3.318. For the other extreme,  = 0, the optimum is equal 

to –1. This is clearly a more exact information about the solution of the problem than 

the one given by the approach from [8] and [10], as shown in Example 1. 

If the decision maker can choose the value of   (the degree of requirements) him-

self, he can look for a compromise solution. He knows that if the requirements are 

very high, there may be no solution, and the higher the requirements, the less interest-
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ing the objective function is. So, high requirements may would lead to good solutions 

from the point of view of constraints, but with a bad objective function. A compromise 

would be thus needed. In our example, the decision maker may decide that it is 

enough for him that the objective function does not exceed 0. From the above solution 

he knows that this is obtained for some   from the interval [0, 0.625]. Even by 

a trial and error method, he will then be able to find such  , i.e., such a degree of 

requirements, that corresponds to the optimal objective function value equal to 0. This 

value is approximately equal to 0.3. If this level of requirements satisfies the decision 

maker, he will accept  = 0.3. 

Of course, here we might also use a more formal approach, using the idea from [1]. 

We might define a function )(G  expressing the satisfaction of the decision maker with 

the optimal value of the objective function from problem P  and define a compromise 

solution as one corresponding to   for which function   −1),(min G  is maximal.  

6. Conclusions 

In many practical situations where linear programming models are used the coeffi-

cients of the model cannot be determined in a precise way. Sometimes they can only 

be given in the form of interval numbers. In this paper, we present a method of solving 

linear programming problems with interval coefficients that has been presented in the 

literature. Then we indicate some of its drawbacks and propose a modification which, 

in our opinion, is a simple, but useful improvement of the method. In some cases the 

information that the decision maker obtains in the modified method would be signifi-

cantly more thorough than in the original one. The modification also allows for much 

more freedom in the choice of some parameters – it is in fact a family of methods, 

comprising the original method as its special case. And this gain does not require 

much more computational effort – the solution algorithm makes use of linear pro-

gramming methods only.  

Further research is needed to consider cases of non-positive or unrestricted deci-

sion variables. And generally, the needs of the decision makers as to the form of the 

solution of a linear programming problem with interval coefficients should be further 

explored, so that new concepts can be built up that will correspond to the preferences 

and attitudes of various decision makers.  
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Uogólnienie pewnej koncepcji rozwiązania zadania programowania liniowego 

z przedziałowymi współczynnikami 

W pracy rozważa się zadanie programowania liniowego z przedziałowymi współczynnikami po obu 

stronach ograniczeń i w funkcji celu. Zanalizowano znaną metodę rozwiązywania tego problemu, 

w której decydent otrzymuje informację o dwóch ekstremalnych przypadkach: o optimum dla przypadku, 

kiedy wszystkie współczynniki przyjmują najbardziej niekorzystne wartości i dla przypadku, kiedy 

przyjmują one najmniej korzystne wartości. Ta informacja nie jest bardzo przydatna, jeśli jeden z tych 

przypadków prowadzi do problemu sprzecznego – wtedy decydent nie ma żadnej informacji o zakresie 

możliwych wartości funkcji celu. Proponuje się metodę (i odpowiedni algorytm, wykorzystujący tylko 

metody programowania liniowego), która w każdym przypadku pozwala uzyskać informację o zakresie 

możliwych wartości funkcji celu. 

 


